Logički zadaci za V i Vl razred 2.dio

Cupidon
VIP
Učlanjen(a)
04.10.2009
Poruka
5.207
Logički zadaci za V i Vl razred 2.dio



1. Lekar je prepisao bolesniku da uzima tablete svakih pola sata. Za koje će vreme bolesnik potrošiti pet tableta ?
Rešenje: Za dva sata

2. Dve kruške imaju zajedno 100 g. Veća kruška i teg od 30 g su u ravnoteži sa manjom kruškom i tegom od 40 g. Koliko grama je teška svaka kruška?
Rešenje: Iz zadatka zaključujemo da je veća kruška za 10 grama teža od manje. 55 grama i 45 grama

3. Ako sedne u klupe 5 učenika, za 7 učenika nema mesta. Ako sedne u klupe 7 učenika, ostaju 3 mesta prazna. Koliko je klupa i koliko učenika?
Rešenje: Klupa 5, učenika 32.

4. U kutiji se nalaze dve vrste bombona. Ne gledajući , treba uzeti iz kutije nekoliko bombona tako da među uzetim budu bar dve bombone iste vrste. Koji najmanji broj bombona treba uzeti?
Rešenje: Ako se uzmu samo 2 bombone tada one mogu biti različitih vrsta. Treba uzeti tri bombone.

5. Koji broj , u redu brojeva 0, 1, 3, 6, 10, 15, 21 … sledi posle broja 21?
Rešenje: Broj 28

6. Pomoću dve posude od 3 l i 5 l odmerite iz vodovodne slavine u lonac 4 l vode.
Rešenje: Napunite posudu od 5l i njome napunte posudu od 3 l, ostatak od 2 l sipajta u lonac . Ponovite to još jednom i u loncu će biti četiri litra vode.

7. Kada je putnik prešao 10 kilometara, ostalo mu je još dve petine puta do sredine. Kolika je dužina celog puta?
Rešenje: Ako u jednoj polovini puta ima 10 kilometra i još dve petine puta , onda i u drugoj polovini ima isto toliko, pa jedna petina puta iznosi 20 kilometara, a ceo put 100 kilometara

8. U korpi se nalaze 10 belih , 7 crvenih I 5 zelenih kuglica. Koliko najmanje , ne gledajući , treba izvaditi kuglica iz korpe da bi među njima bilo kuglica svih boja?
Rešenje: 18 kuglica

9. Brat i sestra imaju zajedno 23 godine. Da je brat 2 godine mlađi , onda bi on bio 2 puta stariji od sestre. Koliko je godina bratu , a koliko sestri?
Rešenje: Da je brat mlađi za dve godine, onda bi imali zajedno 21 godinu. 21 : 3 = 7. Brat ima 16 godina, a sestra 7 godina

10. Na jednu stranu vage stavljen je komad sapuna, a na drugu još ¾ sapuna. Vaga je u ravnoteži . Kolika je težina sapuna?
Rešenje: Četvrtina sapuna teška je tri četvrtine kilograma, a celi sapun 3 kilograma

11. Tri dugarice Milena, Jovana i Ivana su zajedno imale 980 dinara. Prvo su išle u bioskop i svaka je platila svoju kartu. Zatim su otišle u prodavnicu i potrošile Milena 168, Jovana 109 i Ivana 123 dinara. Na kraju im je ostalo zajedno 130 dinara. Kolika je cena jedne bioskopske karte?
Rešenje: Ako je cena karte x onda su zajedno potrošile na karte 3x dinara.
3x + ( 168 + 109 +123) + 130 = 980
3x = 980 – 530
3x = 450

x = 150
Cena jedne bioskopske karte je 150 dinara

12. Koliko listova ima knjiga ako je za numerisanje njenih strana upotrebljeno tačno 77 sedmica
Rešenje: Za numeraciju prvih 100 strana upotrebljeno je 20 sedmica, i to za numeraciju sledećih strana: 7, 17, 27, 37, 47, 57, 67, 70, 71, 72, 73,74, 75, 76, 777, 78, 79, 87 i 97. Slično za numeraciju narednih 200 strana upotrebljeno je jo 40 sedmica, tako da je ostalo 17 sedmica. Znači da knjiga ima 378 strana, odnosno 189 listova.

13. Odredi razliku najvećeg i najmanjeg šestocifrenog broja zapisanih pomoću cifara 0, 2, 3, 6, 7 i 9, tako da se svaka cifra pojavljuje u svakom od brojeva tačno jednom.
Rešenje: Najveći takav broj je 976320, a najmanji 203679. Njihova razlika je 976320 – 203679 = 772641

14. U jednoj godini je bilo 53 petka. Ako je 1. januar bio četvrtak, koji dan je bio 1. april?
Rešenje : Sem 2. januara koji je bio petak, u godini je bilo još 52 petka, što znači da je ta godina imala 2 + 7 x 52 = 366 dana, tj. da je bila prestupna. U takvoj godini , između 1. januara i 1. aprila ima tačno 30 + 29 + 31 = 90 dana, što znači da je 1. april 92. dan u godini, sledi da je 1. april bio takođe četvrtak.

-----------------------------------------------------------------------------------------------------
Zadaci za razvijanje logičkog razmišljanja

1. Ako u ponoć pada kiša, može li se očekivati da će nakon 72 sata vreme biti sunčano ?
Rešenje: Ne može, jer će posle 72 sata biti opet 12 sati noću, a noću sunce ne sija

2. Miš je udaljen od od svog skloništa 20 koraka. Mačka je udaljena od miša 5 skokova. Dok mačka jedanput skoči, miš načini 3 koraka, ali je jedan skok mačke velik kao 10 miševih koraka. Da li će mačka uhvatiti miša?
Rešenje: Miš će umaći mački za jedan korak

3. Za lonac s poklopcem plaćeno je 1.200 dinara. Lonac je skuplji od poklopca 1.000 dinara. Koliko košta poklopac?
Rešenje: Poklopac košta 100 dinara

4. Kada je biciklista prešao dve trećine puta, pukla mu je guma na točku. Preostali deo puta prešao je pešice utrošivši dvaput više vremena nego vozeći se biciklom. Kolki se puta brže kretao biciklom nego pešice?
Rešenje: Biciklista je prešao pešice trećinu puta, tj. dvaput manje nego biciklom, a utrošio je dvaput više vremena. Prema tome , vozio je 4 puta brže nego što je išao pešice

5. Za svesku je plaćeno 100 dinara i još trećinu cene sveske. Kolika je cena sveske?
Rešenje: 150 dinara

6. Otac je stariji od sina 3 puta, a sin je stariji od sestre 3 puta. Koliko je godina ocu ako zbir njegovih i ćerkinih godina iznosi 50?
Rešenje: 45 godina

7. Kada je učenik pročitao polovinu knjige i još 20 strana ostalo mu je da pročita još trećinu knjige. Kolko je imala strana imala knjiga?
Rešenje: 120 strana

8. Na koliko se načina od 6 jabuka mogu uzeti 2 jabuke?
Rešenje: 15 načina

9. Kada je ocu bila 31 godina, sin je imao 8 godina, a sad je otac dvaput stariji od sina. Koliko je sinu sada godina?
Rešenje: 23 godine. Otac je stariji od sina 23 godine. Prema tome, sin treba imati 23 godine da bi otac bio dvaput stariji od njega.

10. Majka je imala 26 godina kada je rodila kćerku, a 31 godinu kada je rodila sina . Koliko danas svako od njih ima godina ako svi zajedno imaju 60 godina.
Rešenja: Kada se rodio sin kci je imala 5 godina. Ukupno kći i majka su imale 36 godina. . (60 - 36):3=8. Sin 8, kći 13 i majka 39 godina.

11. Napišite 0 pomoću 3 četvorke.
Rešenje: (4 - 4) x 4 = 0

12. Dva brata, Uroš i Marko rođeni su istog dana, u istom mestu, iste godine i od istih roditelja, ali nisu blizanci. Kako je to moguće?
Rešenje: Rođeni su kao trojke s još jednim bratom ili jednom sestrom.

13. Brat i sestra su pre 8 godina imali zajedno 8 godina. Koliko će godina imati zajedno posle 8 godina?
Rešenje: I sestra i brat će posle 8 godina biti stariji za po 16 godina i imaće ukupno 40 godina.

14. Sinu je 9 godina , a ocu je 35. Kada će otac biti tri puta stariji od sina?
Rešenje: Razlika između godina i oca i sina ostaje stalna. Kada sin bude imao 13 godina

15. Svi prirodni brojevi počevši od 1, napisani su uzastopno u redu jedan iza drugog : 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 itd. Koji broj u tom zapisu stoji na stotom mestu?
Rešenje: Na stotom mestu mestu je broj 5 u broju 55.

 
Učlanjen(a)
08.11.2010
Poruka
1
ako imamo 28 kamila i 45 grba koliko imamo jednogrbih a koliko dvogrbih kamila?
 
Natrag
Top