Šta je novo?

Cloud Academy - Introduction to Azure Stream Analytics

  • Začetnik teme dlreleases
  • Datum pokretanja
D

dlreleases

UPLOADER
Učlanjen(a)
01.05.2019
Poruka
20.418

MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz, 2 Ch
Difficulty: Intermediate | Genre: eLearning | Language: English | Duration: 9 Lectures (50m) | Size: 674 MB

Azure Stream Analytics (ASA) is Microsoft's service for real- data analytics.​

Create and run a Stream Analytics job

Use windows to process streaming data

Scale a Stream Analytics job

Monitor and troubleshoot errors in Stream Analytics jobs

SQL experience (recommended)

Microsoft Azure account recommended (sign up for free trial at
if you don't have an account)

Some examples include stock trading analysis, fraud detection, embedded sensor analysis, and web clickstream analytics. Although these tasks could be performed in batch jobs once a day, they are much more valuable if they run in real . For example, if you can detect credit card fraud immediately after it happens, then you are much more likely to prevent the credit card from being misused again.

Although you could run streaming analytics using Apache Spark or Storm on an HDInsight cluster, it's much easier to use ASA. First, Stream Analytics manages all of the underlying resources. You only have to create a job, not manage a cluster. Second, ASA uses Stream Analytics Query Language, which is a variant of T-SQL. That means anyone who knows SQL will have a fairly easy learning how to write jobs for Stream Analytics. That's not the case with Spark or Storm.

In this course, you will follow hands-on examples to configure inputs, outputs, and queries in ASA jobs. This includes ingesting data from Event Hubs and writing results to Data Lake Store. You will also learn how to scale, monitor, and troubleshoot analytics jobs.

Anyone interested in Azure's big data analytics services





DOWNLOAD
nitroflare
Kod:
http://nitroflare.com/view/F73AB7D2CE6A97A/MxU6M8vD__Introducti.rar
 
Top